skip to main content


Search for: All records

Creators/Authors contains: "Gonzalez, Miguel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The development of high-throughput experimentation (HTE) methods to efficiently screen multiparameter spaces is key to accelerating the discovery of high-performance multicomponent materials (e.g., polymer blends, colloids, etc.) for sensors, separations, energy, coatings, and other thin-film applications relevant to society. Although the generation and characterization of gradient thin-film library samples is a common approach to enable materials HTE, the ability to study many systems is impeded by the need to overcome unfavorable solubilities and viscosities among other processing challenges at ambient conditions. In this protocol, a solution coating system capable of operating temperatures over 110 °C is designed and demonstrated for the deposition of composition gradient polymer libraries. The system is equipped with a custom, solvent-resistant passive mixer module suitable for high-temperature mixing of polymer solutions at ambient pressure. Residence time distribution modeling was employed to predict the coating conditions necessary to generate composition gradient films using a poly(3-hexylthiophene) and poly(styrene) model system. Poly(propylene) and poly(styrene) blends were selected as a first demonstration of high temperature gradient film coating: the blend represents a polymer system where gradient films are traditionally difficult to generate via existing coating approaches due to solubility constraints at ambient conditions. The methodology developed here is expected to widen the range of solution processed materials that can be explored via high-throughput laboratory sampling and provides an avenue for efficiently screening multiparameter materials spaces and/or populating the large datasets required to enable data-driven materials science. 
    more » « less
  2. Chlorine radicals readily activate C-H bonds, but the high reactivity of these intermediates precludes their use in regioselective C-H functionalization reactions. We demonstrate that the secondary coordination sphere of a metal complex can confine photoeliminated chlorine radicals and afford steric control over their reactivity. Specifically, a series of iron(III) chloride pyridinediimine complexes exhibit activity for photochemical C(sp(3))-H chlorination and bromination with selectivity for primary and secondary C-H bonds, overriding thermodynamic preference for weaker tertiary C-H bonds. Transient absorption spectroscopy reveals that Cl center dot remains confined through formation of a Cl center dot larene complex with aromatic groups on the pyridinediimine ligand. Furthermore, photocrystallography confirms that this selectivity arises from the generation of Cl center dot within the steric environment defined by the iron secondary coordination sphere. 
    more » « less
  3. Super-reducing excited states have the potential to activate strong bonds, leading to unprecedented photoreactivity. Excited states of radical anions, accessed via reduction of a precatalyst followed by light absorption, have been proposed to drive photoredox transformations under super-reducing conditions. Here, we investigate the radical anion of naphthalene monoimide as a photoreductant and find that the radical doublet excited state has a lifetime of 24 ps, which is too short to facilitate photoredox activity. To account for the apparent photoreactivity of the radical anion, we identify an emissive two-electron reduced Meisenheimer complex of naphthalene monoimide, [NMI(H)](-). The singlet excited state of [NMI(H)](-) is a potent reductant (-3.08 V vs Fc/Fc(+)), is long-lived (20 ns), and its emission can be dynamically quenched by chloroarenes to drive a radical photochemistry, establishing that it is this emissive excited state that is competent for reported C-C and C-P coupling reactivity. These results provide a mechanistic basis for photoreactivity at highly reducing potentials via singlet excited state manifolds and lays out a clear path for the development of exceptionally reducing photoreagents derived from electron-rich closed-shell anions. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)